Regression

Before We Begin

Crattar Dlntc
aALClLLCT 1 UL

Linear Associations: Direction and Strength
Other Types of Association

Correlation Analysis

Two Variables: X and Y

The Logic of Correlation

The Formula for Pearson’s r
Application

Interpretation

An Additional Step: Testing the Null
Conclusion and Interpretation

Regression Analysis

An Application

The Logic of Prediction and the Line of Best Fit
The Regression Equation

The Standard Error of the Estimate

Chapter Summary

Some Other Things You Should Know
Key Terms

Chapter Problems



regression Analysis

An Application

The Logic of Prediction and the Line of Best Fit
The Regression Equation

The Standard Error of the Estimate

Chapter Summary
Some Other Things You Should Know
Key Terms

Chapter Problems

In the last chapter, we looked at the idea of the association between two categorical
variables. In doing so, we explored the idea of two variables being tied to one
another by something other than chance. In this chapter, we extend our under-
standing of the idea of association as we take up two procedures appropriate for sit-
uations involving two interval/ratio level variables. First, we’ll examine Pearson’s r,
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or simple correlation analysis. Following that, we’ll explore a related procedure
known as regression analysis. As a prelude to both, we’ll explore the use of scatter
plots as a means to visually represent the association between two variables.

Before We E

As you encounter this twelfth and final chapter, 'm going to ask you to explore
some additional dimensions related to relationships. First, you're going to be
introduced to the notions of the strength and direction of relationships. In
doing so, you’ll deal with the question of how closely tied one variable is to the
other, as well as how the variables vary together, so to speak. You'll also be
dealing with the matter of prediction—the idea that if you know something
about the way two variables are related, you're then in a position to make
predictions. For example, if you have some knowledge as to the strength and
direction of the relationship between two variables, X and Y, it is possible to
make a prediction about the likely value of Y, given a certain value of X.

All of that may strike you as a little bit abstract as we begin this chapter, but
| can assure you that you're already familiar with a lot of concepts that you're
going to encounter. Means, standard deviations, and Z scores are about to reen-
ter the picture. If you think you’re a little rusty on some of those concepts, par-
ticularly standard deviations or Z scores, take a little time to reread previous
material on the topics. The review will serve you well.

Scatter Plots

A scatter plot is an extremely useful tool when it comes to looking at the
association between two variables. In short, a scatter plot allows us to simultane-
ously view the values of two variables on a case-by-case basis. A typical example
used to illustrate the utility of a scatter plot is one involving the association
between height and weight. Table 12-1 shows a hypothetical distribution of values
of those variables (height and weight) for 20 cases.

A visual representation of the same data in the form of a scatter plot is
shown in Figure 12-1. Height measurement values are shown along the hori-
zontal or X-axis of the graph: weight measurement values are shown along the
vertical or Y-axis of the graph. Focusing on case number 1, shown in the lower
left corner of the scatter plot, we can interpret the point as reflecting a person
(case) with a height of 59 inches (or 4' 11") and a weight of 92 pounds. Each
of the 20 points can be interpreted in the same fashion—a reflection of the val-
ues of two variables (height and weight) for a given case.

Note that the scales along the X- and Y-axes are different. The variable of
height is expressed in inches, but the variable of weight is expressed in pounds.
As you learned earlier when you encountered Z scores, though, the fact that
the scales are based on different units of measurement is not a deterrent to
statistical analysis. Indeed, correlation analysis is a technique that is perfectly
suited for such situations. All of that in good time, though. For the moment,
let’s take a closer look at scatter plots and what they can tell us.
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Table 12-1 Height/Weight Data for 20 Cases
(Young Adult Females): Raw Scores
Height Weight
Case (Inches) (Pounds)
1 59 92
2 61 105
3 61 100
4 62 107
5 62 114
6 63 112
7 63 120
8 63 130
9 64 132
10 64 137
11 65 132
12 65 138
13 65 120
14 66 136
15 66 132
16 67 140
17 67 143
18 68 139
19 68 134
20 69 153
160
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Figure 12-1 Height/Weight Data for 20 Cases (Young Adult Females):

Scatter Plot
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LEARNING CHECK

Question: What is a scatter plot?
Answer:  It's a visual representation of the values of two variables
on a case-by-case basis.

Linear Associations: Direction and Strength

When two variables (Variable X and Variable Y) are associated, they can be
associated in several ways. A scatter plot can provide a graphic and concise
statement as to the general relationship or association between two variables.
In short, a scatter plot tells us something about the direction and strength of
association. To better grasp the variety of relationships or associations that are
possible, take a look at Figures 12-2 through 12-5. These illustrations reflect
data on two variables—Variable X and Variable Y. As you consider the illustra-
tions, don't worry about what the X and Y variables represent or how they
might be measured. Just look at each axis as a scale that has low to high values.
Treat the illustrations as abstract representations; focus on the general trends or
associations that may or may not be reflected in the scatter plots.

One of the first observations we might make about the illustrations in
Figure 12-2 is that they reflect linear patterns of association. To suggest that an
association between twio variables is linear is to suggest that the pattern could be des-
cribed as approximating a straight line. Looking at both illustrations in Figure 12-2,
however, we note that linear associations can take different forms.

LEARNING CHECK

Question: What is a linear association between two variables?

Answer:  It's an association that can be described in general terms
as approximating a straight line.
a. Positive b. Negative
High o High |
L ]
° ®e
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Y . Y .
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Low Low iy
Low % High Low % High

Figure 12-2 Moderate Positive (Direct) and Negative (Inverse) Associations
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Direction of Association. Figure 12-2a depicts what we refer to as a positive
or direct association. To say that two variables are related or associated in a
positive or direct fashion is to say that they track together; it means that a high
value on Variable X is generally associated with a high value on Variable Y, and
a low value on Variable X is generally associated with a low value of Variable Y.
If, however, the variables are related in a negative or inverse fashion, an oppo-
site pattern appears (see Figure 12-2b). In a negative or inverse association,
high values on Variable X are associated with low values on Variable Y, and low
values on Variable X are associated with high values on Variable Y. In short, the
variables track in opposite directions.

[ LEARNING CHECK

Question: What is a positive or direct association?

Answer:  It’s an association in which the variables track together.
As one variable increases in value, the other variable
increases in value. As one variable decreases in value,
the other variable decreases in value.

Question: What is a negative or inverse association?

Answer:  It’s an association in which the variables track in opposite
directions. As one variable increases in value, the other
variable decreases in value. As one variable decreases in
value, the other variable increases in value.

Strength of Association. Figure 12-3 presents similar patterns, but with one
important difference. There is less dispersion of the points in the plots (when
compared to the patterns shown in Figure 12-2), and the general trend (either
positive or negative) is more easily detected. In that sense, the illustrations in

Figure 12-3 reflect associations that are stronger than those represented in
Figure 12-2.

a. Positive b. Negative
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High 3 High | ®
e ®
L]
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Figure 12-3  Stronger Positive and Negative Associations



Scatter Plots 279

a. Positive b. Negative
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Figure 12-4 Perfect Positive and Negative Associations

Now take a look at Figure 12-4. Note that the association between the
variables is shown as being even stronger. Indeed, the points in the scatter plots
appear to be aligned in a straight line. Although such associations are rare in the
real world, we could characterize the relationships shown in Figure 12-4 as
perfect associations. They're perfect in the sense that the value on one variable
could serve as a perfect or precise predictor of the value on the other variable.

As noted above, we rarely encounter perfect associations in the world of social
science research. Even so, the idea of a perfect relationship is useful, because it
helps us understand what is meant by strength of association. In many respects,
the strength of an association is just an expression of how close we might be to
being able to predict the value on one variable from knowledge of the value on
another variable. Some associations are stronger than others in the sense that they
come closer than others to the notion of perfect predictability.

LEARNING CHECK

Question: What is meant by the term strength of association?

Answer:  It's an expression of the extent to which the value of one
variable can be predicted on the basis of the value of
another variable.

Other Types of Association

Finally, take a look at Figure 12-5. In Figure 12-5a, the points in the scatter
plot are widely dispersed, and there isn’t any discernable pattern. For all prac-
tical purposes, the relationship or association is non-existent. In the case of
Figure 12-5b, a clear pattern is evident, but it's a curvilinear association (as
opposed to the more linear relationships depicted in the previous illustrations;).
As the values of Variable X increase, the values of Variable Y also increase—
up to a point. Eventually, however, the pattern begins to flatten and then
reverses: as the values on Variable X increase, the values on Variable Y decrease.
In short, a curvilinear association is one that is best described by a curved line.
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a. Non-existent b. Curvilinear
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Figure 12-5 Non-existent and Curvilinear Associations

[¥] LEARNING CHECK

Question: In terms of a scatter plot,what is a curvilinear relationship?
Answer:  It’s a scatter plot in which the general pattern of the plot
conforms to a curved line.

Question: In terms of a scatter plot, what does it mean to say that
an association is non-existent?

Answer:  It’s a scatter plot in which there is no apparent
association or pattern.

By now, you should be getting the picture. The association between two
variables can take many forms. It can be positive, negative, weak, or strong. It
can also be linear, curvilinear, or non-existent.

It’s clear that a scatter plot can be a helpful tool in statistical analysis. It pro-
vides a visual statement about the general nature of an association and does so
in a concise format. Statisticians, however, generally want something more
exact—some sort of quantitative expression about the nature of associations—
and for that they turn to correlation analysis.

Correlation Analysis

Correlation analysis is a technique developed by Karl Pearson; thus, it’s often
referred to as Pearson’s r. The popularity of Pearson’s r stems from what it tells
us about the direction and strength of association between two variables. When
Pearson’s r is calculated, the result will be a value that ranges from —1.0 to +1.0,
depending on the direction and strength of association. Without going into the
mathematics of the calculation just yet, let’s take a closer look at what it means
to say that the value of r has a known range between —1.0 and +1.0.
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LEARNING CHECK

Question: What is Pearson’s r?
Answer:  It's a measure of the strength and direction of association
between two variables.

Question: What is the range of r?
Answer:  The value of r can range from —1.0 to +1.0.

Assuming that the two variables under investigation are related in a linear
fashion (as opposed to a curvilinear fashion), the sign and value of r will tell us
quite a lot about the relationship. A positive sign signals a positive or direct as-
sociation; a negative sign signals a negative or inverse association. The closer
the value is to +1.0 or —1.0, the stronger the association is between the two
variables. An r value of +1.0 would indicate a perfect positive or direct associ-
ation between the variables; an r value of —1.0 would indicate a perfect negative
or inverse association between the variables. As I mentioned before, a perfect
association, whether positive or negative, is one in which there would be perfect
predictability. Knowledge of the value of one variable would allow us to make
an exact prediction of the value of the other variable.

[ LEARNING CHECK

Question: If the value of r has a positive sign, what does that mean?
Answer: It means that the variables are associated in a positive or
direct fashion.

Question: If the value of r has a negative sign, what does that mean?
Answer: It means that the variables are associated in a negative or

inuarea fachinn
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Keep in mind that none of this necessarily indicates causation. Just because
two variables appear to be closely associated with one another, it doesn’t neces-
sarily mean that one variable causes the other variable. Remember some of the
points we covered in the last chapter. Recall that outside of highly controlled ex-
perimental research, it’s virtually impossible to legitimately infer causality. Also
keep in mind that what may look like a case of causality may be nothing more
than the fact that two variables are expressions of a common concept. That said,
we move on to our discussion of Pearson’s r, or simple correlation analysis.

Two Variables: X and Y

Our discussion of scatter plots and Pearson'’s r has thus far revolved around
the notion of two variables, usually referred to as Variable X and Variable Y.
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We could have used the symbols Variable 1 and Variable 2, or almost any other
designation, but as a matter of convention, we typically speak in terms of
Variable X and Variable Y. Those notations appear time and time again in our
discussions, so some additional commentary is warranted.

When researchers speak in terms of Variable X and Variable Y, they com-
monly propose some logical connection between the two. For example, the
X variable is commonly regarded as the independent variable, and the Y vari-
able is commonly regarded as the dependent variable. In the language of
research, an independent variable is a variable that’s presumed to influence
another variable. The dependent variable, in turn, is the variable that’s pre-
sumed to be influenced by another variable.

For example, it's common to assert that there’s a connection between a
person’s level of education and level of income. Educational level would be
treated as the independent variable, and level of income would be regarded as
the dependent variable. In other words, education (independent) is thought to
exert an influence on income (dependent).

[] LEARNING CHECK

Question: What'’s the definition of an independent variable?
Answer:  It’s the variable that’s presumed to influence another
variable.

Question: What'’s the definition of a dependent variable?
Answer:  It’s the variable that’s presumed to be influenced
by another variable.

Once again, it's important to remember that the notion of one variable
exerting an influence on another is not the same thing as pure causality. For
example, it’s easy to understand how one’s level of education would have some
connection to one’s level of income, but it’s difficult to imagine that education
is the only variable that determines income. A person’s level of education
might be one influence on level of income, but that’s hardly the same thing as
saying level of education causes a person’s level of income.

Although researchers rely on simple logic when it comes to identifying the
independent and dependent variables, not all research situations are clear-cut.
Consider the association between the level of unemployment in a community and
the level of in-migration. The level of unemployment in a community may influ-
ence the amount of in-migration, but continued in-migration is likely to affect the
level of unemployment. Job opportunities (expressed in low levels of unemploy-
ment) could attract significant numbers of job seekers, to the point that the level
of unemployment is pushed upward. Much like the relationship between
the temperature in a room and a thermostat, each variable has a way of affecting
the other. Such relationships are said to be reciprocal—relationships or associations
in which each variable is presumed to exert an influence on the other.
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LEARNING CHECK

Question: What is a reciprocal relationship?
Answer: A reciprocal relationship is one in which each variable is
presumed to exert an influence on the other variable.

Given that, it's probably best to expand your thinking about Variable X and
Variable Y as follows: When you can reasonably assign a variable’s place in a
logical sequence of events, it’s reasonable to think in terms of Variable X as the
independent variable and Variable Y as the dependent variable. When you
can’t make a reasonable assignment of place in a logical sequence of events,
just think of Variable X and Variable Y as two variables—plain and simple,
without regard for causality, logical sequencing, or anything else.

Later on, we’ll deal with Variable X as the variable that you'd use to predict
Variable Y, but all of that can wait until our discussion of regression. For the
present, we'll continue with our discussion of simple correlation analysis as a
measure of the association between Variable X and Variable Y. As before, we’ll
start with the logic.

The Logic of Correlation

In truth, correlation analysis takes many forms (such as multiple correlation or
partial correlation); the one we're considering here is referred to as simple
correlation. In short, simple correlation analysis allows us to measure the
association between two interval/ratio level variables (assuming that the two
variables, if associated, are associated in a linear fashion). The logic of correla-
tion analysis traces back to the notion of Z scores (something you encountered
in Chapter 2). You'll want to review the material in Chapter 2 if you think
you're not quite up to speed on the topic. Assuming you feel comfortable with
the concept, however, we can move to the topic of Z scores and what they
allow us to do in the context of correlation analysis.

Earlier you learned how to transform a raw score into a Z score by finding the
difference between a raw score and the mean of a distribution and dividing that dif-
ference by the standard deviation of the distribution. Just to refresh your memory
on this point, consider the formula for a Z transformation and recall what it allows
you to do. Z transformations allow you to convert the scores on different scales to
a single scale based on Z scores (or points along the baseline of the normal curve).

Raw Score — Mean

~ ‘Standard Deviation

For example, look back at Figure 12-1. Note that the values along the
horizontal and vertical axes are expressed in different scales or units of measure-
ment: inches along the horizontal axis and pounds along the vertical axis.
When we consider the raw scores of the points represented in the scatter plot,
then, we are dealing with two different scales. The two sets of scores will be on
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the same scale, though, if they're transformed into Z scores. The same is true
for any number of situations.

For example, student aptitude test scores (SAT scores) and grade point
averages (GPAs), when expressed as raw scores, are based on very different
underlying scales, but the raw scores can easily be transformed into Z scores
to create a single scale of comparison. Data on education (expressed as the
number of school years completed) and income (expressed in dollars) can
share a common scale when transformed into Z scores. The list goes on. All
we need is the mean and standard deviation of each distribution. It's a simple
transformation: Subtract the mean from each raw score in the distribution,
and divide each difference by the standard deviation.

Decades ago, Pearson discovered something very interesting about distrib-
utions of Z scores. In short, he discovered that it’s possible to transform two
distributions of raw scores (expressed as pairs of scores or values) into Z scores,
perform some very minor calculations, and end up with a statistic that will
always range between —1.0 and +1.0. What Pearson discovered became the
basis for the computation of r.

In developing the correlation procedure, Pearson found that two distribu-
tions of closely associated Z scores that tracked together in a positive (direct)
fashion would result in an r value approaching +1.0. He also discovered that
two distributions of Z scores that were closely associated in a negative (inverse)
direction would result in an r value approaching —1.0. All that’s necessary is a
couple of minor calculations, once the raw scores have been converted to
Z scores. This brings us to the formula for r, so that’s where we’ll turn next.

The Formula for Pearson’s r

Because the computational formula for r includes the steps necessary to
convert raw scores to Z scores, it has a way of appearing extremely complex.
Assuming you know the basis of Pearson’s r (namely, the conversion of raw
scores into Z scores), though, you're in a position to rely on a more conceptual
formula—one I suspect you'll find very simple to follow. The heart of the more
conceptual approach has to do with what we refer to as the cross products of
the Z scores. That sounds like a mouthful until it's explained, so let’s start with
a look at the data presented in Table 12-2.

Table 12-2 shows pairs of values or scores associated with 10 cases.
Columns 2 and 4 show the raw score distributions for the two variables, X and
Y. The means and standard deviations of the raw score distributions are given
at the bottom of the table. Columns 3 and 5 show the Z scores or transforma-
tions based on the associated raw scores. (Recall that these are calculated by
subtracting the mean from each raw score and dividing by the standard devia-
tion.) Case number 1, for example, has a raw score X value of 20 (shown in
Column 2) and a Z score (Zy) value of ~1.49 {shown in Column 3). The raw
score Y value for case number 1 is 105 (shown in Column 4), and the Z score
(Z) value of =1.57 (shown in Column b).

The cross products are obtained by multiplying each Zy value (the entry in
Column 3) by the associated Z,, value (the entry in Column 5). The results of the
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Table 12-2 Cross Product Calculations for X and Y Variables
(Positive Association)

(1) (2) (3) (4) 5) (6)
Case X Zy Y Zy Zy o Zy
1 20 -1.49 105 -1.57 2.34
2 25 -1.16 126 -0.84 0.97
3 30 -0.83 122 -0.98 0.81
4 35 -0.50 130 -0.70 0.35
5 40 -0.17 155 0.17 -0.03
6 45 0.17 159 0.31 0.05
7 50 0.50 153 0.10 0.05
8 55 0.83 184 1.18 0.98
9 60 1.16 177 094 1.09
10 65 1.49 190 1.39 2.07
Sum of Cross Products = 8.68
Mean of X = 42.50
Standard Deviation of X = 15.14
Mean of Y = 150.10
Standard Deviation of Y = 28.65

cross product multiplication are shown in Column 6 (Zy, « Z,). Earlier | mentioned

that the cross products of the Z scores lie at the heart of correlation analysis.
Now that you know how to derive the cross products, it’s time to encounter

the formula for the calculation of r. My guess is that you’ll find it to be rather

straightforward.
E (ZX * Zy)

n—1
As in Table 12-2, the symbol Zy, denotes the Z scores for the X variable,
and Z, denotes the Z scores for the Y variable. All you need to do is sum the
cross products and divide the sum by the number of paired cases minus 1. The
result is our calculated value of r. For the data presented in Table 12-2, the cal-

culation is as follows:
2(zy 0 Zy)
n—1
8.68
B
r=+0.96
Note that we use n — 1 in the denominator of the formula. You should be

r=

r=

r

ference in the two approaches traces back to the manner in which the standard
deviation for each distribution was calculated (recall that the standard deviation
is a necessary ingredient for the calculation of a Z score). As you may recall
from Chapter 2, the choice of using n — 1 versus n in the denominator when
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Table 12-3 Cross Product Calculations for X and Y Variables
(Negative Association)

(1) 2) (3) (4) (5) (6)
Case X 7, Y Z, 2.2,
1 20 -1.49 190 1.39 -2.07
2 25 -1.16 177 0.94 -1.09
3 30 -0.83 184 1.18 -0.98
4 35 -0.50 153 0.10 -0.05
5 40 -0.17 159 0.31 -0.05
6 45 0.17 155 0.17 0.03
7 50 0.50 130 -0.70 -0.35
8 55 0.83 122 -0.98 -0.81
9 60 1.16 126 -0.84 -0.97
10 65 1.49 105 -1.57 -2.34
Sum of Cross Products = -8.68
Mean of X = 42.50
Standard Deviation of X = 15.14
Mean of Y = 150.10
Standard Deviation of Y = 28.65

calculating the standard deviation of a sample is somewhat discretionary. The
assumption in this text is that n — 1 was used in the calculation of the standard
deviations of Variable X and Variable Y.

Just to make certain that you're on track with the notion of cross products
and how they're used to develop a value for r, consider the data presented in
Table 12-3—another example similar to the one you encountered in Table 12-2.
In the case of Table 12-3, however, you'll note that as the raw scores (and the
corresponding Z scores) for Variable X increase, those for Variable Y decrease,
indicating a negative association. As expected, the resulting r value reflects
the negative or inverse direction of the relationship:

2z 2y)
n—1
~8.68
9
- —0.96

r=

[4] LEARNING CHECK

Question: In the context of Pearson’s r, what is a cross product;
that is, how is a cross product computed?

Answer: A cross product is the result of multiplying a Zy score by
a Zyscore. To obtain the Z, and Zy scores, individual X
and Y scores must first be converted to Z scores.
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Earlier I mentioned that the computational formula for r can be rather
threatening if you don’t know what it really represents. Now you know,
however, that the calculation (based on the cross products of Z scores) is
actually quite straightforward. Still, you deserve to have a look at a typical
computational formula for r—if only to convince yourself that the business of
statistical analysis isn’t always as complex as it might appear. The formula that
follows, for example, is typical of how a computational formula for r might be
presented:

n2XY - (2X)(2Y)
V[nZx2 - (Zx)?|[n2v? - (2]

Such a formula can be very handy if you're using a calculator to compute
the value of r. Given the increasing use of computers and statistical software,
however, the real issue is likely to be whether or not you have a solid under-
standing of what lies behind a procedure and how to interpret the results. In
the case of Pearson’s r, my guess is that the conceptual formula, based on the
cross product calculations, gives you a better understanding of what's really
involved in the calculation.

Application

We've covered the necessary information to move forward with a typical re-
search application, so let’s begin with the example presented in Table 12-4.
Assume that information has been collected from a sample of 20 people on
two different variables: level of education (the number of school years
completed) and number of memberships in voluntary associations (clubs and
organizations). We’ll treat the education variable as the X or independent
variable; the variable related to the number of memberships will be treated as
the Y or dependent variable. The raw scores are shown as Variable X and
Variable Y.

A quick examination of the data suggests that there’s likely to be a positive
association between the two variables. After all, the general pattern is one in
which high levels of education are associated with a high number of association
memberships. By the same token, low levels of education are generally associ-
ated with low numbers of memberships. The question, of course, is just how
strong the association is. Rather than relying on the more complex computa-
tional formula, we’ll move forward on the basis of the conceptual formula out-
lined earlier. Recall that we’ll be working toward developing a value for r as a
function of the cross products.

The first step is the conversion of the raw score distributions into Z score
distributions. The mean and standard deviation (which are necessary ingredi-
ents in the conversion of raw scores to Z scores) are given at the bottom of
the table. The Z score transformations, along with the cross products, are listed
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Table 12-4 Raw Data and Cross Product Calculations for Educational Level

and Association Memberships

Mean of X = 10.65
Standard Deviation of X = 4.04

Mean of Y = 4.05
Standard Deviation of Y = 1.88

X Y Zy Zy Iy Zy
Educational  Association
Case Level Memberships
1 10 5 -0.16 0.51 -0.08
2 11 3 0.09 -0.56 -0.05
3 16 6 1.32 1.04 1.37
4 7 4 -0.90 -0.03 0.03
5 6 2 -1.15 -1.09 1.25
6 7 0 -0.90 -2.15 1.94
7 11 3 0.09 -0.56 -0.05
8 20 4 2.31 -0.03 -0.07
9 14 5 0.83 0.51 0.42
10 11 5 0.09 0.561 0.05
11 6 4 -1.15 -0.03 0.03
12 7 4 -0.90 -0.03 0.03
13 9 4 -0.41 -0.03 0.01
14 ¥ 2 -0.90 -1.09 0.98
15 10 6 -0.16 1.04 -0.17
16 16 6 1.32 1.04 1.37
17 17 7 1.57 1.57 2.46
18 11 7 0.09 1.57 0.14
19 10 2 -0.16 -1.09 0.17
20 7 2 -0.90 -1.09 0.98

Sum of Cross Products = 10.81

in the appropriate columns. The sum of the cross products (10.81) is shown at

the bottom of the last column.

Recall that all we have to do now to obtain the value of r is divide the sum

of the cross products by n — 1. Thus, we can calculate the value as follows:

r=

n—1
10.81
19
r=+0.57

E(ZX . ZY)
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Interpretation

We now have a calculated r value of +0.57, but there’s still the question of how
we should interpret it. Statisticians actually use the information provided by the
r value in two ways.

The value of r is referred to as the correlation coefficient. The sign
(+ or =) in front of the r value indicates whether the association is positive
(direct) or negative (inverse). The absolute value of r (the magnitude, without
respect to the sign) is a measure of the strength of the relationship. The closer
the value gets to 1.0 (either +1.0 or —1.0), the stronger the association.

[#] LEARNING CHECK

Question: What does the sign of the correlation coefficient tell us?
Answer:  The sign of the correlation coefficient tells us the direc-
tion of the association (either positive or negative).

Question: What does the magnitude of the correlation coefficient
tell us?

Answer:  The magnitude of the correlation coefficient tells us the
strength of the association.

As a rule, correlation coefficients, whether positive or negative, are inter-
preted as follows (Salkind, 2000):

Oto .2 No relationship to very weak association
2to 4 Weak association

Adto .6 Moderate association

6to .8 Strong association

.8t0 1.0 Very strong to perfect association

Although the value of r is important in its own right, the real utility of the
measure is found in its squared value. When r is squared (to become r?), it’s re-
ferred to as the coefficient of determination. It's the coefficient of determi-
nation that’s so meaningful in statistical analysis. Let me explain.

A quick look at the data tells us that each variable reflects some variation.
People’s level of education varies, and the number of associations to which
they belong also varies. The question is, how much of the variation in one vari-
able can be attributed to variation in the other variable? As it turns out, that’s
what the coefficient of determination is all about.

In other words, the coefficient of determination (r?) is a measure of the ex-
plained variance—the amount of variation in one variable that is attributable to
variation in the other variable. Having obtained a positive r value, we know that
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the association between the variables is in a positive direction. The coefficient
of determination, though, allows us to go well beyond that in our statement
about the relationship.

LEARNING CHECK

Question: What is the coefficient of determination, and how is it
symbolized?

Answer:  The coefficient of determination is the amount of
variation in one variable that is attributable to variation
in another variable. It is symbolized as r2.

Remember: The coefficient of determination is simply the value of r squared
(r?). The r? value is transformed into a percentage value as follows: r? x 100.
For example, starting with our r value of +0.57, we can derive the coefficient of
determination as follows:

r=+0.57
r? =0.325
r’x 100 = 32.5%

Interpretation: 32.5% of the variation in number of memberships is attributable
to variation in level of education.

The interpretation of r? is really quite telling. In this example, it tells us that
variation in level of education explains 32.5% of the variation in the number of
memberships in voluntary organizations. In everyday terms, it allows us to make
more quantitatively based statements about why some people have more mem-
berships and some people have fewer memberships. [t’s certainly true that some
portion of the variation remains unexplained or is not explained by the inde-
pendent variable (in this case, 67.5%), but the information provided by the
coefficient of determination tells us quite a bit about the relationship at hand.

That said, let me caution you about something. When working with
Pearson’s r, always bear in mind that the real interpretive power is found in the
coefficient of determination. Accordingly, you should remind yourself that what
might appear at first glance to be a strong association (an r value approaching
+1.0) has a way of decreasing in magnitude when the value is squared. For
example, an r value of -0.70 might seem to be quite strong. When the value is
squared, however, we find ourselves looking at an r? value of 0.49.

Finally, it's important to remember that r? is considered to be a symmetri-

cal measure. That means that the interpretation of r? works both ways. We can
think of r? as indicating the amount of variation in Y that is attributable to
variation in X, or we can think of it as the amount of variation in X that is

attributable to variation in Y.
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Assuming you've digested the matter of r and r?, there's one more ele-
ment to consider—namely, the matter of a hypothesis test. So far in this chap-
ter, our attention has been directed toward the question of the strength and
direction of the association between two variables. We've yet to deal with the
matter of a hypothesis test for the significance of r. That’s where we’ll
turn now.

An Additional Step: Testing the Null

It’s one thing to measure the apparent strength of association between two vari-
ables based on a pattern that’s reflected in sample data. It’s quite another matter,
though, to deal with the question of whether or not the sample reflects what’s oc-
curring in the larger population. To deal with this second question—whether or
not the pattern reflects the larger population—we turn to a hypothesis-testing
procedure. In short, we test the significance of r.

As always, we'll start by stating an appropriate null hypothesis, and we’ll
select a level of significance in advance. Because our interest is in the question
of whether or not the observed association departs from chance (the assump-
tion of no association), we can express the null hypothesis as follows:

H0:r=0

Following the normal procedure of selecting a level of significance in ad-
vance, we’ll set the level of significance at .05. It's possible to test the null
hypothesis using t, but we can also simply compare the calculated value of r
(the calculated test statistic) to a table of critical values such as the one in
Appendix I. In short, the table shown in Appendix I takes all the work out of
the process.

(4] LEARNING CHECK

Question: When testing the significance of r, what is the null
hypothesis?
Answer:  The null hypothesis is a statement that r = 0.

As with other tables of critical values you've used, Appendix 1 presents crit-
ical values on the basis of the appropriate number of degrees of freedom and
level of significance. When looking at Appendix I, note that the critical values
of r are presented without regard to the sign that may be associated with the
r value (+ or ). For example, a critical value of 0.43 actually represents a crit-
ical value of +0.43 or -0.43.

In testing the significance of r, the number of degrees of freedom is defined
as n — 2, where n equals the number of cases or paired observations under
consideration. For example, the r value we just calculated was based on
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observations for 20 people or cases. Thus, the appropriate number of degrees
of freedom is equal to 20 — 2, or 18. The degrees of freedom are listed in the
first column of Appendix 1.

—

LEARNING CHECK

Question: How do you determine the number of degrees of
freedom when testing the significance of r?

Answer:  The number of degrees of freedom is equal to the
number of cases or paired observations minus 2 (n — 2).

Levels of significance are listed across the top of the table; we’re working
at the .05 level. Locating the column for the .05 level of significance and the
row for 18 degrees of freedom, we note that the point of intersection reveals a
critical value of 0.444. Comparing our calculated test statistic of 0.57 to this
critical value, we determine that the calculated test statistic exceeds the critical
value. Therefore, we reject the null hypothesis (with a .05 probability of making
a Type I error).

Let me suggest you take a couple of moments to carefully examine the crit-
ical values in Appendix [, particularly the way they vary according to the num-
ber of degrees of freedom. For example, the critical value (at the .05 level of
significance) for 28 degrees of freedom is shown as 0.361. In other words,
when working with a sample of 30 cases (degrees of freedom = 28), it would
take a calculated value of r (either + or —) equal to or greater than 0.361 to re-
ject the null. When working with a sample of 10 cases, however (degrees of
freedom = 8), it would take a calculated r value (+ or —) equal to or greater than
0.632 to reject the null hypothesis. This point should make intuitive sense to
you by now. In terms of what it might take to convince you that there’s an
association between two variables, you'd probably demand more extreme
evidence (a larger r value), so to speak, if you were working with a very small
sample, as opposed to a larger sample.

Conclusion and Interpretation

A test of the null hypothesis gives us an important foundation for our results
from a correlation analysis. It's one thing to determine that there appears to be
a strong (positive or negative) association between two variables based on sam-
ple data, but there’s still the issue of whether or not the pattern in the sample
data reflects a similar pattern in the population. And that, of course, is much
the same question that we've dealt with in other hypothesis-testing procedures.

The issue always comes back to the notion that the sampie data, in one
way or another, could be extreme—sample information that doesn'’t really mir-
ror the population in question. Since the critical values of r are so dependent
on sample size, a test for the significance of r (the test of the null hypothesis
that r = 0) is really a second but very important step in correlation analysis.
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Assuming a noteworthy value of r is obtained, it should always be viewed in the
context of whether or not it’s significant.

In retrospect, it’s easy to see why Pearson’s r is such a popular statistical
measure. The simple multiplication (cross products) of the Z scores, divided by
n — 1, produces an r value, and that r value, in turn, tells us something about
the strength and direction of the association between two variables. We also
know that squaring the value of r will produce the coefficient of determination
(r?—a measure of the extent to which the variation in one variable is attribut-
able to variation in the other variable. We also know that there is a simple
procedure available to test the significance of r, assuming that the presumed
association between two variables is strong enough to capture our attention.

By most standards, all of that would be quite enough benefit from one sim-
ple measure. As it turns out, though, the fun has just begun, so to speak.
Armed with the value of r, along with the means and standard deviations of the
raw scores in two distributions, we’re actually in a position to make certain pre-
dictions. More specifically, we can make predictions about a Y value on the
basis of a known or assumed X value. How we go about that falls under the
topic of regression analysis, and that’s what we take up next.

Regression Analysis

A central element in the calculation of r was the conversion of distributions of
raw scores into distributions of Z scores. Indeed, it was the conversion of raw
scores into Z scores that allowed us to look at the association between two vari-
ables originally measured on very different scales (for example, height mea-
sured in inches and weight measured in pounds).

In the case of regression analysis, we find ourselves working with results of
the correlation analysis, but we also return to our distribution of raw scores. We
go back to our raw scores because the aim of regression analysis is the predic-
tion of one value from another. In a sense, you can think of regression analysis
as a technique that allows you to use existing data to predict future values. To
better understand all of that, let’s turn to an example.

An Application

Let’s say a university administrator is concerned about the number of graduate
students who enter the university but fail to complete their degrees. Let’s
assume the administrator’s goal is to get a better handle on the association be-
tween a student’s performance on the GRE (the Graduate Record Examina-
tion, a standardized graduate school admission test) and graduate school GPA
(grade point average in graduate school). Knowing something about the asso-
ciation between these two variables might put the administrator in a better
position to predict the future performance of an applicant.

Let’s assume the administrator has selected a random sample of 10 stu-
dent files for analysis (including students who completed a graduate degree and
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those who dropped out or were dismissed). The stage is now set for a detailed
analysis of the data presented in Table 12-5.

Following the convention outlined earlier, we designate the student GRE
score as the independent or X variable and the GPA score as the dependent or
Y variable. The X variable (the GRE score) is measured as the combined score
on the quantitative and verbal portions of the test. Because each portion of the
test has a score range from 200 to 800, a combined score could range from
400 to 1600. The Y variable (GPA) is measured on a scale that ranges from
0.00 to 4.00. Note that the mean and standard deviation for each distribution
are given at the bottom of the table. Also shown are the calculated values of
r (+0.92) and r? (0.85, or 85%).

A scatter plot of the data from Table 12-5 is shown in Figure 12-6. As we
might have expected, the general pattern suggets a positive association be-
tween the two variables. As GRE scores increase, so do GPAs. The pattern,
however, is far from perfect. By no means are the points in the scatter plot
aligned in a straight line.

With a little imagination, we might conceive of a line that could pass through
the distribution represented by the points—a line that reflects the general trend
in the pattern of cases. But an imaginary line that was eyeballed, so to speak,
might not be too useful. After all, different people are apt to come up with
different imaginary lines, and some lines would more accurately represent the
data than others. There’s one line—a very precise line—however, that best fits

Table 12-5 Data for 10 Cases (GRE scores and GPAs)

X Y Zy Zy ZyeZy
Case GRE Score GPA
1 1378 3.55 1.01 0.72 0.73
2 956 2.65 -0.86 -0.86 0.74
3 1222 3.54 0.32 0.70 0.22
4 830 2.24 -1.42 -1.58 2.24
b 991 3.00 -0.71 -0.25 0.18
6 1300 3.77 0.67 1.11 0.74
7 1521 4.00 1.65 1.51 2.49
8 899 2.62 -1.11 -0.91 1.01
9 1254 3.07 0.46 -0.12 -0.06
10 1149 2.94 0.00 -0.35 0.00

Sum of Cross Products = 8.29

Mean of X = 1150
Standard Deviation of X = 225.20

Mean of Y = 3.14
Standard Deviation of Y = 0.57

r=+0.92
2 = 0.85 (85%)
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Figure 12-6 GRE and GPA Values

the data. It is known, appropriately enough, as the line of best fit. This line,
also called the regression line, allows us to predict the value of Y on the basis
of the value of X. To understand how all of that is done, let’s take a look first at
the logic behind the line and then at the equation for the line.

The Logic of Prediction and the Line of Best Fit

Returning to our example involving GRE scores and GPAs, recall that we
already have the value of Pearson’s r (the correlation coefficient) as +0.92 (see
Table 12-5). Let’s assume we have tested the null hypothesis at the .05 level of
significance and found that we could reject the idea of no association between
the variables. Armed with this information, we are ready to take the next
step—attempting to predict an applicant’s future success (measured in terms of
GPA) on the basis of the applicant’s GRE score.

Had we discovered that the association between the two variables was per-
fect, we would have obtained an r value of +1.0. Had we discovered a perfect
association, we could have produced a scatter plot and easily drawn a straight
line through the points. It would have been a rather simple task because in a
scatter plot based on a perfect association, all the points would be aligned in a
straight line. In a case like that, it would be easy to make a prediction about
future success. All we’d have to do is locate a person’s GRE score along the
X-axis, draw a line up to the line passing through the cases, and then draw a
line over to the axis representing future GPA values. The predicted GPA value
would simply be the GPA associated with a given GRE score.
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Unfortunately, however, we didn’t find a perfect association between the
GRE scores and future GPAs. Our r and r? values were high, but they certainly
fell short of indicating a perfect association between the two variables. Thus,
the prediction of students’ future performance based on their GRE scores be-
comes a bit more problematic. As you're about to discover, however, the pre-
diction may be a bit more problematic, but it's possible nonetheless. It begins
with the same notion we've dealt with before—namely, the idea of a straight
line passing through the distribution of points in a scatter plot.

As it turns out, we can mathematically determine the path of a straight line
that best fits a scatter plot—one that passes through the various points in such
a way that the line best represents the overall pattern of association between
the values. It is the line that passes through the points in such a way that the
squared distances of the points (cases) from the line (taken collectively) are at a
minimum. In a sense, that’s what the term regression analysis is all about. The
term refers to the various elements involved in producing the line of best fit and
making predictions based on that line.

Because the regression line (or line of best fit) is the line that passes
through the distribution in such a manner that the squared distances of the
points to the line is at a minimum, it’s also often referred to as the least
squares line. The regression line (or line of best fit or least squares line) for the
data we’re considering is shown in Figure 12-7. This is the same scatter plot as
the one shown in Figure 12-6, but the regression line has been added. Let me
suggest that you take a few moments to study the scatter plot, along with its
associated line of best fit.
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And that brings us back to the central purpose of regression analysis.
Assuming we knew something about the regression line—assuming we knew
the path of the line—it would be a simple matter to predict the value of one
variable on the basis of the value of the other variable. In other words, given a
value of X, we should be able to predict the value of Y. That, in short, is what
regression analysis allows us to do. Given this ultimate goal, we now turn to the
equation and related formulas.

LEARNING CHECK

Question: What is the line of best fit? What are some other terms
for the same line?

Answer:  The line of best fit is the line that passes through the
points in a scatter plot in such a way that it provides the
best representation of the overall association between
the variables. This is also known as the regression line or
the least squares line.

The Regression Equation

Remember what our task is: We want to predict students’ future performance
(GPA) on the basis of their GRE scores. To do this, we'll rely on the regression
equation—an equation that describes the least squares line (or line of best fit).
The regression equation is defined as follows:

Y =a+ bX
The elements of the formula are as follows:

m Y' is a value that we're attempting to predict (in this case, a particular
GPA); the symbol is read as Y-prime. The term Y’ stands for a predicted
value, as opposed to an actual value.

m X is a value that we are given (in this case, an applicant’s GRE score).

m a is the point where the regression line (the line of best fit) crosses the
Y-axis of a scatter plot. This is known as the Y-intercept (the point at
which the line intercepts the Y-axis).

m b represents the slope of the regression line (the amount of change in Y
that is associated with a unit change in X).

Assuming we can come up with the values of a and b {referred to as
constants), we can predict a future GPA on the basis of a GRE score. Since the
relationship between the two variables is less than perfect, we approach the
analysis with the knowledge that our prediction will likely be less than perfect
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as well. On the other hand, it’s safe to say that the use of the regression equa-
tion puts us in a position to make a very educated guess, even though it is apt
to be less than perfect.

Returning to the elements in the equation, it's clear that now we need to
know the values for a and b (the constants). Down the road, once we have
a and b, we can substitute values for X to make predictions about Y values (or,
more correctly, the Y’ values). But first we have to have the values of a and b.

Calculation of the b Term (the Slope of the Line). As noted previously, the
b term in the regression equation (Y’ = a + bX), is the slope of the line—
that is, the amount of change in Y that accompanies a unit change in X. In our
present example, the slope tells us the increase in a student’s GPA that is ex-
pected to occur with a one-point increase in a student’s GRE score.

Since we're interested in actual scores on the GRE and actual GPA values,
we return to our raw scores for this portion of our analysis. The transformed Z
scores came into play when we calculated the correlation coefficient, and the
correlation coefficient comes into play in the regression procedure. But we
have to deal with the raw scores to get an accurate picture of the unit changes
that are going on in each distribution (that is, how a change in GRE score is ac-
companied by a change in GPA).

The situation is rendered far more comprehensible if we think in terms of
standard deviation units—a change of a certain number of standard deviation
units in one variable accompanied by a change of a certain number of standard
deviation units in the other variable. As it turns out, this idea lies at the heart of
the computation of the b term in the regression equation. In fact, the b term is
simply an expression of the ratio of the standard deviation of the Y variable (s,)
to the standard deviation of the X variable (sy), taking into account the strength
of association (the value of r) between the two variables.

We already have the standard deviation for each distribution of raw scores.
Those, along with the means of each distribution, were shown in Table 12-5 as
follows:

X =1150 sy = 225.20
Y-314 sy = 0.57

The next step is to express the relationship between the two standard de-
viations as follows: sy/sy. The final step in the calculation of the b term is to
multiply the ratio by the correlation coefficient (r). Note that we’ll multiply the
ratio by the value of r, not the value of r. The various steps for the calculation
of the b term can be summarized as follows:

o-(2)
Sx

b= 0.92( e )

225.20
b=10.002
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The real meaning of the b term, or slope of the line, doesn’t come to the
forefront until we have calculated the Y-intercept (the a term). Therefore, we’ll
turn to that calculation next.

Calculation of the a Term (the Y-Intercept). The a term in the regression
equation (Y’ = a + bX) was previously defined as the point where the regres-
sion line (the line of best fit in a scatter plot) crosses the Y-axis. It is mathemat-
ically defined as follows:

a=Y - bX
or the mean of Y, minus the slope (b) times the mean of X

It should make intuitive sense to you that the regression line will, in some
way, reflect the means of both distributions. It’s true that there is a certain
amount of variation in the GRE scores, but there is also an average GRE score
(a mean for the distribution of GRE scores). By the same token, there's a cer-
tain amount of variation in the GPAs, but there’s also an average GPA (a mean
for the distribution of GPAs). In essence, the formula for the calculation of
the Y-intercept (the a term) takes into account both means—the mean of X
(the GRE scores) and the mean of Y (the GPAs). By the same token, it should
make intuitive sense that the formula would also take into account the slope of
the line (the b term), inasmuch as the slope of the line will, in part, influence
where the line crosses the Y-axis.

The means for our raw score distributions (GRE and GPA raw scores) were
given in Table 12-5 as 1150 and 3.14, respectively. Using that information,
along with our calculated b term (for the slope of the line, equal to .002), we
can easily determine the a term (the Y-intercept) as follows:

a=Y - bX

a=3.14 — b(1150)
a=3.14 — 0.002(1150)
a=3.14 - 2.30
a=0.84

Making a Prediction. To make a prediction (to calculate a Y’), all that’s nec-
essary is to return to the formula for the regression equation: Y’ = a + bX. For
example, let’s say we are reviewing an application for admission to graduate
school, and the student’s GRE score equals 1000. Since we now know the val-
ues of a and b, it’s a simple matter to make the prediction. Using the regression
equation, the prediction would move forward as follows:

Y =a+ bX

Y’ = 0.84 + b(1000)

Y' = 0.84 + 0.002(1000)
Y' = 0.84 + 2.00

Yy =284
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Given a GRE score of 1000, we predict the student will achieve a GPA
of 2.84. Does this mean that we know, without question, that the student will
ultimately achieve a GPA of 2.84? No, we can’'t make a prediction like that
with total certainty. The regression line would only yield a perfect prediction if
we were dealing with an underlying perfect association. On the other hand, the
regression procedure (with its line of best fit and associated equation) does give
us a decided advantage over a pure guess. Yes, it may amount to a guess, but
it’s an educated guess.

Additionally, you should note that the prediction, in this case, would be a
prediction of Y’ on the basis of a value of X. In statistical jargon, we say that
we have regressed Y on X. Unlike the correlation procedure that produces a
symmelrical measure (one that will produce the same result regardless of which
variable is designated as X and which is designated as Y), the results of a re-
gression analysis are very much a function of how you designate the variables.
Some thoughtful consideration of how the constants are determined should
convince you of why that is the case.

Now, what about our prediction that a GRE score of 1000 will result in a
GPA of 2.847 You may have a few doubts about all this. True, the regression
equation allows us to make an educated guess. But, you may well ask, just how
“educated” is that guess likely to be.

The Standard Error of the Estimate

If you think back to what you learned earlier when you learned how to esti-
mate the mean of a population or a proportion—when you learned how to
construct confidence intervals—you probably sense where this is going.
You're probably already thinking about the fact that your estimate (your pre-
diction, as it were) is subject to a certain amount of error. If that’s where your
thinking has taken you, let me congratulate you—you're definitely on the
right track.

Remember: Any prediction you make (short of one based on a perfect as-
sociation or an r value of +1.0) will be subject to some amount of error. In re-
gression terms, this overall expression of potential error in an estimate of Y’ is
referred to as the standard error of the estimate (s,). Conceptually, it's an
overall measure of the extent to which the predicted Y’ values deviate from the
actual Y values. Since the standard error of the estimate is an overall measure
of deviation (deviation between the predicted and actual values of Y), you can
think of it as a type of standard deviation.

The formula for the calculation of the standard error of the estimate is as
follows:
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Note that this formula is remarkably similar to the formula for the standard
deviation that you first encountered in Chapter 2. First, it involves the summa-
tion of deviations—in this case, the deviations between the predicted values
(the Y’ values) and the actual values (the Y values). Next, the sum of the devia-
tions is divided by n — 2, to vield the error variance. The final step merely in-
volves taking the square root of the error variance.

If we return to our example involving the GRE scores and the GPAs, we
could calculate the standard error of the estimate (s,) according to the steps out-
lined in Table 12-6. Assuming we carried out these calculations, we'd eventually
discover that the standard error of the estimate is equal to 0.22. We’d then be
in a position to make a more grounded statement about a predicted value.

For example, we could think back to the 1-2-3 Rule that we encountered
earlier and easily make use of it in connection with our prediction. As you’ll re-
call, we learned from the 1-2-3 Rule that approximately 95% of the cases under
a normal distribution will be found +2 standard deviations from the mean.

Table 12-6 Calculation of the Standard Error of the Estimate

Case X Y Y’ (=Y (Y-Y??
1 1378 3.55 3.60 -0.05 0.00
2 956 2.65 2.75 -0.10 0.01
3 1222 3.54 3.28 0.26 0.07
4 830 2.24 2.50 -0.26 0.07
5 991 3.00 2.82 0.18 0.03
6 1300 3.77 344 0.33 0.11
7 1521 4.00 3.88 0.12 0.01
8 899 2.62 2.64 -0.02 0.00
9 1254 3.07 3.35 -0.28 0.08

10 1149 2.94 3.14 -0.20 0.04

D(Y-Y) =042

Calculation of Standard Error of the Estimate
2(y-v)
s, = L .

€ n—2

_ [oa2
S = S

s. = V0.05
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Our predicted GPA (based on a GRE score of 1000) is 2.84, and we
know that the standard error of the estimate (which is really a standard
deviation) is equal to 0.22. Suppose we subtract two standard error units
from our predicted value and add two standard error units to our predicted
value:

2.84 - 2(0.22) = 2.40
2.84 + 2(0.22) = 3.28

We're now back in somewhat familiar territory. Indeed, we're in a position
to estimate that a GRE score of 1000 will be associated with a GPA that ranges
between 2.40 and 3.28 and that we have used a method that will generate a
correct estimate approximately 95 times out of 100.

Can we be 100% certain about our estimate? No, we can’t be 100% cer-
tain that our estimate is correct. On the other hand, our estimate amounts to a
very educated guess. And, as a friend of mine is fond of saying, an educated
guess always beats a shot in the dark.

At the conclusion of this chapter, you'll find a variety of questions and
problems, all designed to enhance your understanding of both correlation and
regression. As in previous chapters, you'll find an emphasis on conceptual as
opposed to computational elements, but you'll have a chance to sharpen your
skills on both fronts. Let me suggest that you give the required time to the
question/problem section. Correlation and regression are part of the statistical
shelf of staples, so to speak. A solid understanding of the concepts will serve
you well.

In this chapter, you were introduced to the topics of correlation and regression
analysis, two of the more popular statistical procedures. Along the way, you ex-
tended your understanding of the notion of a relationship or association between
variables as you added the concepts of strength and direction to your storehouse
of knowledge. You were introduced to the notions of the correlation coefficient
and the coefficient of determination—two concepts that allow us to say quite a
lot about the association between two variables. What's more, you learned that
it's an easy matter to test a null hypothesis involving a correlation coefficient.

In your exploration of regression analysis, you learned about the regression
line and the regression equation. You also learned that it’s possible to predict
the value of one variable, given the value of another variable (provided the vari-
ables are associated in a linear pattern). You also learned, however, that such a
prediction wili not be perfect {(uniess, of course, the underiying association be-
tween the variables is perfect).

In short, you learned quite a lot. However, a full exploration of correlation
and regression analysis is impossible in just a few pages. For this reason, [ urge
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you to pay close attention to the next section (“Some Other Things You Should
Know™). Think of it as an invitation to further exploration into the world of
statistical analysis.

Some Other 1

You Should

In many ways, a complete chapter on the topics of correlation and regres-
sion could approach a near limitless length. We’ve only scratched the sur-
face in this presentation—touching on the very basic principles involved in
the most fundamental applications. The topics of correlation and regression
are so substantial that entire texts (often of considerable length) have been
devoted to them. It's always difficult to draw the line when it comes to the
matter of an introductory voyage into the world of statistics, and just how
much should be given over to the topics of correlation and regression is a
case in point.

More advanced texts, for example, often deal with the techniques of multi-
ple and partial correlation. Similarly, other texts may present material on more
advanced regression techniques. For example, see Ramsey and Shafer (2002)
for an excellent treatment, should you want to explore the more advanced
procedures.

As to the material presented here, there are still a few things you should
take into consideration before you launch into a simple correlation or regres-
sion analysis. With the widespread availability of computer-based statistical
software, correlation or regression analysis can be tempting, particularly if
you're faced with a mountain of data that’s crying out for analysis. On the
other hand, certain assumptions should be met before embarking on the pro-
cedures, and you should always approach your interpretation of results with
some caution.

As to the fundamental assumptions that underlie simple correlation analy-
sis, you're already aware that the procedure rests on the availability of interval/
ratio level data—two variables, each expressed in terms of an interval/ratio
scale of measurement. Moreover, there is an assumption that each variable
under consideration is normally distributed and that the variances of each dis-
tribution are roughly equal.

As to the caution that should be exercised in the interpretation of results,
keep in mind that a prediction made on the basis of regression analysis is always
subject to error. Just as the estimate of a population mean or proportion is
always accompanied by some margin of error, the same applies in the case of
a prediction of Y’ on the basis of the regression equation.

Finally, you should always remember that your analysis, more than likely,
will involve sample data, and with that go certain limitations and assumptions.
Now, however, you're armed to deal with them. Welcome to the world of
statistical analysis!
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a term in the regression equation linear association

(Y = a + bX) negative (inverse) association
b term in the regression equation Pearson’s r

(Y = a + bX) perfect association
coefficient of determination positive (direct) association
correlation regression analysis
correlation coefficient regression equation
curvilinear association regression line
dependent variable scatter plot
independent variable standard error of the estimate
least squares line strength of association
line of best fit Y prime (Y’)

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1.

ol

11.

12.

An r value of would be interpreted as a perfect negative
association.

. An r value of would be interpreted as a perfect positive
association.
The value of r has a range from to

. An r value of 0 would be interpreted as association.
A is a visual representation of the values of two variables on
a case-by-case basis.
The coefficient, or r, reveals the strength and direction of an

association between two variables.

. The coefficient of , or r2, tells the amount of variation in

one variable that is associated with or explained by variation in the other
variable.

. The regression line is the of best ; it is also referred to as the
squares line.
The equation for the regression line is Y’ = :
. In the regression equation, is the value that we are attempting to
predict.

In the regression equation, is the Y-intercept or the point where
the regression line crosses the Y-axis.

In the regression equation, represents the slope of the regression line.
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Application Questions/Problems

1. Consider the following set of data:

Case X Y
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13
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a. What is the value of the mean of X?
b. What is the value of the standard deviation of X?
c. What is the value of the mean of Y?
d. What is the value of the standard deviation of Y?
e. What is the value of the sum of the cross-products?
f. What is the value of r?
2. Consider the following set of data:
Case X Y
1 8 39
2 10 42
3 9 51
4 10 59
5 12 84
6 12 38
7 8 48
8 9 59
9 12 63
10 10 T

w0 Ao o

What is the value of the mean of X?

What is the value of the standard deviation of X?
What is the value of the mean of Y?

What is the value of the standard deviation of Y?
What is the value of the sum of the cross-products?
What is the value of r?
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3. Two variables, Variable X and Variable Y, are the focus of a study. The
study involves 14 research participants. The sum of the cross products
(Zx o Zy) for the 14 cases is —-11.62.
a. Calculate and interpret r.
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b. Calculate and interpret r?.
c. Assuming you were to test the significance of r at the .05 level of signif-
icance, state an appropriate null hypothesis. What would you conclude?

. Two variables, Variable X and Variable Y, are the focus of a study. The

study involves 50 research participants. The sum of the cross products

(Zy ¢ Zy) for the 50 cases is 15.66.

a. Calculate and interpret r.

b. Calculate and interpret r2.

c. Assuming you were to test the significance of r at the .05 level of
significance, state an appropriate null hypothesis. What would you
conclude?

. Two variables, Variable X and Variable Y, are the focus of a study. The

study involves 25 research participants. The sum of the cross products

(Zx « Z,) for the 25 cases is 21.58.

a. Calculate and interpret r.

b. Calculate and interpret r?.

c. Assuming you were to test the significance of r at the .05 level of
significance, state an appropriate null hypothesis. What would you
conclude?

. A researcher discovers the following information about the association

between Variable X and Variable Y:

Mean of X = 50.49 Standard deviation of X = 12.83
Mean of Y = 18.30 Standard deviation of Y = 4.11
r=-0.71

Calculate a and b in the regression equation (Y’ = a + bX).

. A researcher discovers the following information about the association

between Variable X and Variable Y:

Mean of X = 20 Standard deviation of X = 6
Mean of Y = 100 Standard deviation of Y = 30
r=+0.83

Calculate a and b in the regression equation (Y’ = a + bX).

. Assume you've collected information from 6 students as to how many

hours they work each week and their grade point averages (GPAs). The
information is shown below.

X Hrs. Ve

Student Worked GPA Zy Zy Zy o Zy
1 10 3.80 -0.66 0.76 -0.50
2 20 3.44 0.00 0.14 0.00
3 40 2.50 1.32 -1.48 -1.95
4 35 2.81 0.99 -0.95 -0.94
5 0 4.00 -1.32 1.10 -1.45
6 15 3.62 -0.33 0.45 -0.15
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Mean of X = 20 Standard deviation of X = 15.17
Mean of Y = 3.36 Standard deviation of Y = 0.58

Note that the two variables, or number of hours worked each week (X) and
GPA (Y), have already been transformed into Z scores.

a. Calculate and interpret r.

b. Calculate and interpret r2.

c. Calculate a and b in the regression equation (Y’ = a + bX).

. Assume you've collected information from customers at a local bookstore.

More specifically, for 10 customers, you have the following information
on their levels of education and expenditures on book purchases.

Meanof X = 13 Standard deviation of X = 3.46
Mean of Y = 15.70 Standard deviation of Y = 15.28

Note that the two variables, years of education (X) and dollar amount of
expenditure (Y), have already been transformed into Z scores

X Y

Yrs. $
Education Expenditure Zy Zy Zy o Zy
1 13 5 0.00 -0.70 0.00
2 17 45 1.16 1.92 2.23
3 9 0 -1.16 -1.03 1.19
4 11 18 -0.58 0.15 -0.09
5 15 25 0.58 0.61 0.35
6 8 4 -1.45 -0.77 1.12
7 13 10 0.00 -0.37 0.00
8 18 35 1.45 1.26 1.83
9 16 15 0.87 -0.05 -0.04
10 10 0 -0.87 -1.03 0.90

a. Calculate and interpret r.

b. Calculate and interpret r2.

c. Calculate a and b in the regression equation (Y’ = a + bX).
d. Calculate the standard error of the estimate.

Using the information that you developed in your responses to Question 9
(related to level of education and expenditures at a book store), predict the
amount of expenditure for someone with 20 years of education.





